

EUROPEAN REGIONAL DEVELOPMENT FUND

EUROPEAN UNION

BFCC Baltic Fracture Competence Centre

BFCC

Pilot infections of BFCC: the differences in care and outcome treating implant related infection in Baltic Sea Region countries

Sarunas Tarasevicius, Lithuania

13-14/02/2019, Lubeck

Introduction

- In 2010, 3.5 million new fractures, including approximately 610,000 hip fractures
- 560,000 forearm fractures, 520,000 vertebral fractures and 1,800,000 other fractures were estimated in the EU
- The use of surgically implanted devices is also increasing

Introduction

- Implant- related infections is one of the most challenging complication in orthopedic and trauma surgery
- Complex fractures have an overall 5% infection rate when treated with an implant
- Guidelines could assist in the prevention and treatment of implant related infection
- However, guidelines may be not followed accurately, and do not have answers to all possible treatment options.

Introduction

- Changes for today's treatment regimens are necessary
- An evaluation of the current standard treatments and a comparison of treatment pathways between hospitals:
 - -identify causes for infection
 - best-practice examples for infection control to reduce their overall occurrence

Study plan

- The questionnaire was developed and distributed to partner hospitals (Germany and Lithuania)
- Retrospective data were covered for outcome analysis of open tibial fractures (2015-2016)
- Current period for standards of infections prophylaxis and treatment comparison

- Questionnaire description:
 - I part (current situation) :
 Preoperative process measures
 Operative process measure
 Postoperative process measure
 Infection process measure
 Outcome and cost-effectiveness

 - measures
 - -II part:
 - Retrospective analysis of all open tibial fracture's treatment
 - Retrospective analysis of infected tibial fractures treatment

Quest analysis and summarized results: GER vs LT (1)

- Both countries have adopted a/b prophylaxis guidelines
- A/b prohylaxis is used routinely in Lithuania and Germany
- Routine a/b prophylaxis: Lithuania Cefazolin, Germany-Cefuroxim
- In Lithuania first dose of a/b is administred in >30 min.
 before skin incision, in Germany- just before the incision
- In both countries duration of a/b prophylaxis 24 hours
- In Lithuania hair routinely is not removed, In Germany hairs are removed with callipers
- Tranexamic acid is not routinely used for trauma patients (depend on case)

Quest analysis and summarized results: GER vs LT (2)

	Lithuania	Germany
What kind of ventilatoin system is installed in	Conventional (mixing)	Passive air flow
operating room ?	system	
Do you use tourniquet?	Depend on case	Depend on case
A/b prophylaxis dose injection in relation to	Before	Before
tourniquet inflation		
Do you use drains	Depend on case	Routinely
Drainage duration?	24 hrs	48 hrs
Operative field films?	Iodophor-impregnated	Not used
Surgical gloves	powder-free surgical	patented puncture
	glove with a gel coating	indication system
How many pairs of surgical gloves you wear during operation?	2	2
Surgical gloves exchange frequency during operation	Each two hours	I don't care
Antiseptic used for surgical site preparation	Alcohol-CHG	Alcohol-iodophor
	(ChloraPrep)	(DuraPrep, Prevail-FX)
Solution used for surgical site wash	Chlorhexidine	Other
How often nurse change surgical site wash	Never	l don't know

solution during operation?

l don't know

Interreg Baltic Sea Region

•1

Quest analysis and summarized results: GER vs LT (3)

• •	Lithuania	Germany
How many blades used for skin and subcutaneous tissue cutting?	2	2
Scalpel blades exchange frequency during operation	Each layer cut	Other frequency
Do you use coagulation for tissue cutting?	Depend on case	Depend on case
Surgical site drapes	Depend on case	Single-use
Trauma implants storage place	General sterile package	Special storage room
Operating theatre door type	Automatic	Automatic
Personal equipment (mobile phones, watches, bracelets) in OR	Special box in OR	Not allowed to bring
Does nurse cover unused instruments during operation?	Never	Depend on case
Local infiltration of anesthetic (LIA) in trauma cases	Never	Depend on case

Quest analysis and summarized results: GER vs LT (4)

	Lithuania	Germany
Who changes wound dressings for the operated patients, and where?	Nurse in ward	Nurse in ward
How often wound dressings change is performed?	Every 24 hours	Every 24 hours
Type of anticoaguliant	Low molecular weight heparins	Low molecular weight heparins
Location of trauma patients in the department	General wards	Specialized trauma wards

Quest analysis and summarized results: GER vs LT (5)

	Lithuania	Germany
Most common bacteria for early surgical site infection	S.Aureus	S.Aureus
Most common bacteria for late surgical site infection	S.Epidermidis	S.Epidermidis
What are yours actions if you see the redness in area of surgical wound?	Local dressing with antiseptic	Give antibiotics
Most common diagnostic methods used a when you suspect an infection	Biopsy and culturing	Clinical expression
Do you have hospital/department algorithm/guidelines for trauma related implants infections?	No	No

Quest analysis and summarized results: GER vs LT (5)

Average length of hospital stay for uncomplicated trauma patient	Lithuania 4 days	Germany 5 days
Average length of hospital stay for septic trauma patient	21 days	35 days
Average price of mid shaft tibial fracture treated operatively	5120 €	30 047 €

Comparison of clinical data

- Tibial fracture
 - OpenClosedInfected

Open/closed tibia fracture analysis

Study rationale

- The tibia is the most commonly fractured long bone
- Treatment methods varies
- Outcome varies in different countries

Study design

- One hospital for Germany and Lithuania
- Retrospective analysis of medical data
- Included all closed/open tibia fractures
- Inclusion period from 2015-01-01 till 2016-12-31

Material and methods

- Prefilled excel file prepared questionnaire
- Sent over to two clinical partners (Lithuania and Germany)
- Germany extracted data from hospital charts
- LT reviewed individual patient charts

Descriptive statistics

104 patients

- Germany 69 (G); Lithuania 35 (L)
- Males 68 (G 45; L 23);
- Females 36 (G 24; L 12)
- Age 49 year (G 51 (Cl 46-56); L 47 (Cl 41-53); p=0,9632).

- Fractures statistically significantly were caused by high energy trauma (p=0.003)
- Significantly higher rate of open fractures were in Germany (p=0.004).

Tibial fracture classification	Lithuania	Germ	any
Closed fracture Open:	29	33	
Grade I	4	19	p=0.004
Grade II	1	14	
Grade III	1	3	
		Baltic Sea Region	BFCC

- Reposition method (open vs closed) did not differ between countries (p=0.337)
- Implant choice did not differ among the countries (p=0.138)

Implant choices	Lithuania	Germany
Nonlocking plate	11	20
Locking plate	13	33
IMN	8	15
Screws fixation	0	1 p=0.138
External fixation	3	0
Total	35	69

Baltic Fracture Competence Centr

- No correlations between open fracture and treatment method (p=0.332)
- Fracture zone, fracture type and surgery duration do not have any impact on complication rate.

		Open fract	ure classification	
Implant choices	Closed fracture	Grade I	Grade II	Grade III
Nonlocking plate	22	6	3	0
Locking plate	27	9	8	2
IMN	11	8	3	1 p=0.552
Screws fixation	1	0	0	0
External fixation	1	0	1	1
Total	62	23	- 15	4

Proximal part	20	0
Shaft	53	2
Distal part	19	0
Total	102	2

Comparison of infected tibial fractures Study design

One hospital for Germany and Lithuania

- Retrospective analysis of medical data
- Included all complicated septic tibia fractures
- Inclusion period from 2015-01-01 till 2016-12-31

Descriptive statistics

- 21 patients
- Germany 15 (G); Lithuania 6 (L)
- Males 19 (G 14; L 5);
- Females 2 (G 1; L 1)
- Age 53 yr. (G 55 (Cl 43-66); L 50 (Cl 32-69); p=0,4313).

- Age, gender, ASA, country, fracture type, reposition method and implant does not have impact on complications.
- In Germany the most common bacteria is S.Aureus (8 of 15 patients), in Lithuania- S.Epidermidis and Streptococcus respectively (4 of 6).
- A/b treatment: Lithuania Cefazolin, Germany-Cefuroxim (p=0.001)

• Microorganism, comorbidities, smoking and alcohol abuse does not have impact on complications.

Alcohol use	No complication	Complica	tion
Abstinent	8	9	
Former use	0	1	
Ongoing use	1	2	
Total	9	12	p=0.612
Smoking status	No complication	Complica	ation
Never	5	8	
Former use	0	1	
Ongoing use	4	3	p=0.488
Total	9	12	

Interpretations

- Certain differences in routines before and after the surgery were observed
- Differences in distribution of fracture types, while treatment methods are similar
- However not enough data to draw big conclusions
- The need of unified guidelines for infection management is undisputable

Thank you for your attention

